Design Optimization of Hip Resurfacing Prosthesis Using Finite Element Analysis

ثبت نشده
چکیده

Hip resurfacing is an alternative to total hip arthroplasty for the young and active patient likely to outlive traditional means of hip joint replacement. To optimize design on the hip resurfacing prosthetic stress profile in the proximal femur after hip resurfacing. The acetabular cup is implanted in much the same fashion as an uncemented total hip arthroplasty, however, implantation of the femoral component is unique to hip resurfacing, presenting both distinct benefits and limitations The von Mises stress profile (a combination of compressive, tensile, and shear stresses) of the native femur had simulated and compared with resurfaced femurs using various prosthetic materials, stem lengths with different sizes, and femoral head coverage [240o, 200o, and 180o]. Redesign of the Hip resurfacing acetabular cup by providing notch type and groove extruded models. Maximal cortical stresses to be observed at the posterior half of the medial femoral neck.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

Prosthesis design and stress profile after hip resurfacing: a finite element analysis.

PURPOSE To evaluate the effect of prosthesis design on stress profile in the proximal femur after hip resurfacing. METHODS The von Mises stress profile of the native femur was simulated and compared with that of resurfaced femurs using various prosthetic materials (titanium, cobalt-chrome, ceramic), stem lengths (normal, half, short, and no stem), and femoral head coverage (shell size) [260 d...

متن کامل

Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions

Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...

متن کامل

Pre-clinical evaluation of ceramic femoral head resurfacing prostheses using computational models and mechanical testing.

Ceramic-on-ceramic hip resurfacing can potentially offer the bone-conserving advantages of resurfacing while eliminating metal ion release. Thin-walled ceramic resurfacing heads are conceivable following developments in the strength and reliability of ceramic materials, but verification of new designs is required. The present study aimed to develop a mechanical pre-clinical analysis verificatio...

متن کامل

Biomechanical study of the resurfacing hip arthroplasty: finite element analysis of the femoral component.

Finite element analysis was performed using 3-dimensional models to examine the biomechanical characteristics of the femoral component in resurfacing hip arthroplasty. Stress concentration was observed in the cortical bone adjacent to the rim of the prosthesis. Stress shielding was observed in the anterosuperior regions on the cancellous bone cross-sections near the cup rim. These biomechanical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015